量子计算机会带来很多的好处,即有些事情比撤消更容易做

图片 6

原标题:量子计算机要来了!信息会更加安全了!

2017-12-01 上海保交所 燕宝
量子密码和后量子密码

1 美国国家安全局的“8.19”声明

量子计算是一种新的计算方式,可以让人类使用当今的计算技术执行根本不可能的技术。它允许非常快速的搜索,这会破环我们今天使用的一些加密算法。本文由格密链社区的刘天成翻译。量子计算可以很容易地计算大数,这会破坏任何密钥长度的RSA密码系统。这就是密码学家努力设计和分析“量子抗性”公钥算法的原因。目前,量子计算还处于起步阶段,密码学家无法确定哪些是安全的,哪些不是安全的。但即使假设外星人已经充分发挥了这项技术的作用,量子计算也并不意味着密码学的世界末日。对称加密很容易产生量子抗性,我们正致力于量子抗性公钥算法。如果根据我们的数学知识和计算能力,公钥加密最终只是一个暂时的异常,我们仍然可以生存。如果一些不可思议的外星技术可以打破所有的密码学,我们仍然可以基于信息理论保密

尽管能力有很大的损失。密码学的核心依赖于数学上的技巧,即有些事情比撤消更容易做。就像粉碎一块钢板比将所有碎片粘合在一起更容易一样,将两个素数相乘以获得一个大的数字比把这个大数字再分解成两个素数要容易得多。这种不对称

  • 单向函数和陷阱门单向函数 –
    是所有密码学的基础。为了加密消息,我们将它与密钥组合以形成密文。没有密钥,逆转过程就更加困难了。不仅有点困难,而且是非常的难。现代加密算法如此之快,以至于它们可以保护您的整个硬盘驱动而不会出现任何明显的减速,但是在宇宙爆炸之前,加密是无法打破的。使用对称加密,来用于加密消息,文件和驱动器,这种不平衡性是指数级的,并且随着密钥的增大而被放大。添加一位密钥会使加密的复杂程度增加不到百分之一(略过不证明),但打破成本却增加了一倍。因此,256位密钥看起来只有128位密钥的两倍,但是(根据我们目前的数学知识),破解256位的秘钥比破解128位的秘钥要困难340,
    282, 366, 920, 938, 463, 463, 374, 607, 431, 768, 211,
    456倍。公钥加密(主要用于密钥交换)和数字签名更加复杂。因为它们依赖于诸如因子分解之类的困难的数学问题,所以有更多潜在的技巧来反推它们。因此,您将看到RSA的密钥长度为2,048位,基于椭圆曲线的算法的密钥长度为384位。但是,在这里,用这些密钥长度反转算法的成本超出了人类目前的承受能力。这种单向性基于我们的数学知识。当你听说密码学家“打破”一个算法时,发生的事情就是他们找到了一个新的技巧,使反推变得更容易。密码学家一直在发现新的技巧,这就是为什么我们倾向于使用长度超过严格要求的密钥长度。这对于对称和公钥算法都是如此;
    我们正在努力证明它们的未来。量子计算机有望颠覆这一切。由于它们的工作方式,它们擅长扭转这些单向函数所需的各种计算。对于对称密码学,这不是太糟糕。Grover的算法表明量子计算机可以加速这些攻击,从而有效地将密钥长度减半。这意味着256位密钥与量子计算机一样强,就像128位密钥与传统计算机相比;
    两者在可预见的未来都是安全的。对于公钥加密而言,结果更加可怕。Shor的算法可以很容易地破解所有常用的基于因式分解和离散对数问题的公钥算法。密钥长度加倍会增加破解难度的难度。可这还不足够持久这样。这两个段落有很多值得注意的地方,其中最大的一点是能够做这样的事情的量子计算机目前还不存在,没有人知道什么时候会出现
  • 或者即使 –

    我们能够建立一个。当我们尝试实现Grover或Shor的算法时,除了密钥大小之外,我们也不知道会出现什么样的实际困难。(量子计算机上的纠错很容易成为一个不可逾越的问题。)另一方面,一旦人们开始使用实际的量子计算机,我们不知道会发现什么其他技术。我敢打赌,我们将克服工程挑战,并将有许多进步和新技术,但他们将花时间去发现和发明。就像我们花了几十年的时间才能把超级计算机装进口袋一样,要花上几十年的时间才能解决建造大型量子计算机所需的所有工程问题。从短期来看,密码学家在设计和分析量子抗性算法方面付出了相当大的精力,而这些算法可能在几十年来都保持安全。这是必然是一个缓慢的过程,因为良好的密码分析转换标准需要时间。幸运的是,我们还有时间。实用的量子计算似乎总是在“未来十年”中,这意味着没有人可以知道。然而,在那之后,这些算法总是有可能落入具有更好量子技术的外星人。我不太担心对称加密,其中Grover的算法基本上是量子改进的上限,而不是基于数论的公钥算法,这种算法感觉更脆弱。量子计算机有可能在某一天摧毁所有这些计算机,即使是那些今天就具有量子抗性的计算机。如果发生这种情况,我们将面临一个没有强大的公钥密码学的世界。这将是对安全性的巨大打击,并且会打破我们目前所做的很多事情,但我们可以适应。在20世纪80年代,Kerberos是一个全对称的身份验证和加密系统。最近,GSM蜂窝标准只进行了对称加密进行了大规模的身份认证和密钥分发。是的,这些系统具有集中的信任和失败点,但是可以设计使用秘密拆分和秘密共享的其他系统来最小化该风险。(想象一下,一对通信者分别从五个不同的密钥服务器中获取一个会话密钥。)通信的普及也使今天的事情变得更容易。我们可以使用带外协议,例如,您的手机可以帮助您为计算机创建密钥。我们可以使用面对面注册来增加安全性,可能是在商店购买您的智能手机或初始化您的互联网服务。硬件的进步也可能有助于在这个世界中保护密钥。我不是想在这里设计任何东西,只是指出有很多设计可能性。我们知道密码学是关于信任的,而且我们有比早期的互联网更多的技术来管理信任。像前向保密这样的一些重要属性会变得迟钝而且复杂得多,但只要对称加密仍然有效,我们仍然会有安全性。这是一个奇怪的未来。也许基于数论加密的整个概念,这是我们现代公钥系统的基础,是基于我们不完整的计算模型的暂时的迂回。现在我们的模型已经扩展到包括量子计算,我们可能最终回到20世纪70年代末和80年代初的水平:对称加密,基于密码的加密,Merkle哈希签名。这既有趣又具有讽刺意味。是的,我知道量子密钥分配是公钥加密的潜在替代品。但是,拜托

    是否有人希望系统需要专门的通信硬件和电缆才能用于除小众应用之外的任何其他应用?未来是移动,永远是嵌入式计算设备。这些软件的任何安全性都必须仅限于软件。还有一个未来的方案需要考虑,一个不需要量子计算机的方案。虽然有几种数学理论支持我们在密码学中使用的单向性,但证明这些理论的有效性实际上是计算机科学中一个重大的开放性问题。正如聪明的密码学家有可能找到一种新技巧,可以更容易地破解特定算法,我们可以想象有足够数学理论的外星人可以打破所有加密算法。今天对我们来说的话,这也太荒谬了。公钥密码学是所有数论,并且可能容易受到数学倾向的外星人的影响。对称密码学是如此多的非线性混乱,因此容易变得更加复杂,并且容易增加密钥长度,这种未来是不可想象的。考虑具有512位块和密钥大小以及128循环的AES变体。除非数学与我们目前的理解有根本不同,否则在计算机由物质以外的东西构成并占据除空间之外的东西之前,这将是安全的。但是,如果这种难以想象的事情发生了,那我们将只有完全基于信息理论的加密:一次性密码本及其变体。这将是对安全的巨大打击。一次性密码本可能在理论上是安全的,但实际上它们不能用于除专门的小众应用之外的任何东西。今天,只有破解者才会试图建立基于一次性密码本的通用系统

    密码学家嘲笑他们,因为他们用密钥管理和物理安全问题(更加困难)取代了算法设计问题(简单)。在我们陌生的科幻未来中,我们可能一无所有。对于这些神一般的外星人,密码学将是我们唯一可以肯定的技术。我们的核武器可能会拒绝引爆,我们的战斗机可能会从空中坠落,但我们仍然能够使用一次性密码本安全地进行通信。这里面有一种乐观主义。

量子革命变身密码“终结者” 未来计算机加密技术亟待革新

量子计算机会带来很多的好处,但是其中一个副作用是它会打破目前用于保护信息的机制。但业界正在努力,澳大利亚的QuintessenceLabs正在发挥关键作用。

近日,由中国金融科技50人论坛(CFT50)与证券信息技术研究发展中心(上海)举办的“区块链里的密码学技术”闭门研讨会议,在上海证券大厦举行。

2015年7月29日,美国正式对外公布“国家战略计算倡议”。正当人们纷纷猜测该战略倡议中提到的未来新型计算是什么样的时候,二十天后的8月19日,美国国家安全局网站上发布了一则消息,开宗明义指出“由于面临量子计算机的潜在威胁”,国家安全局这个负责统管美国政府和军方密码系统的最高机构决定将联邦政府所使用的“B包密码体制”替换成“抗量子密码体制”。一石激起千层浪。首先,在现实社会当中美国国家安全局一直非常低调和神秘(这也是为什么好莱坞总是喜欢拿它来吸引眼球的原因),而这次美国国家安全局居然一反常态在互联网上公开阐明其最核心的秘密—联邦政府部门所使用的密码系统可能面临的巨大威胁,这件事情本身就非常诡异。美国国家安全局用意何在?“8.19”声明背后是否有什么“阴谋”?其次,什么是“抗量子密码”?它和“量子密码”又是什么关系?此外,量子计算机都还没有研发出来,怎样说明一个密码能够抗击量子计算机的攻击?……

图片 1

量子计算会使世界发生彻底的变革,澳大利亚也将第一个冲向量子终点线。但是量子计算机对药物等领域带来好处的同时,也会破坏当前的安全方法。

图片 2

我们先来看一看美国国家安全局这个“8.19”声明的要点。国家安全局在密码领域承担了“密码破译”和“密码设计”两大任务。密码破译的工作由国家安全局下属的“信号情报部”(Signals
Intelligence
Directorate,SID)负责,其前身甚至可以追溯到第二次世界大战期间破译日本的“紫密”等工作,中途岛海战大败日本帝国海军,以及日本“战神”三本五十六的座机被击落均是它立下的战功。而密码设计的工作则由美国国家安全局下属的“信息保障局”(Information
Assurance Division,
IAD)负责。信号情报部负责“攻”,信息保障局负责“防”,一矛一盾。此次美国国家安全局的“8.19”声明是指其下属的信息保障局研发的B包密码体制将面临量子计算机的威胁,并要求使用“抗量子密码”来替换它。一句话,这次的“8.19”声明是针对美国联邦政府部门自身的密码升级方案。那么B包密码体制为何不再安全了呢?

目前广泛使用的加密技术将无法抵御量子计算机的进攻。图片来源:Carol
Highsmith

澳大利亚量子网络安全公司QuintessenceLabs(以下简称为QLabs)的创始人兼首席执行官Vikram
Sharma在上周的ACS堪培拉大会发表演讲后接受了ZDNet的访谈,他详细描述了全球安全行业的计划,为在接下来的十年内实现量子计算机而做准备。

主题演讲,上海保交所区块链底层首席架构师 燕宝

B包密码体制包括了多种以现代公钥密码为基础的加密算法、数字签名算法、密钥协商算法和随机数生成算法等。而现代公钥密码诞生于上个世纪七十年代中叶,其安全性依赖于数学上的皇冠—数论中的一类困难问题。美国国家安全局组织专家对公钥密码的安全性分析了整整三十年,在确认没有什么安全漏洞之后,才于2005年允许B包密码体制在联邦政府内部的信息系统当中投入使用。根据NSA的相关规定,B包密码体制可以用于联邦政府的机密信息传递,而且和更为神秘的A包密码体制一道,可以用于处理最高密级为绝密级的信息,例如美联储等机构就可以使用B包密码体制来传递敏感信息。

解码者的恐惧是必然的。强大量子计算机的问世将打破互联网的安全纪录。尽管,人们认为这些设备还需要10年甚至更久才能投入应用,但研究人员坚称,准备工作必须开始。

“在量子计算方面取得的成就会给我们以前用于保护信息安全的机制带来风险。但是有趣的是,量子技术也能够提供一些解决方案来缓解这一风险或者迎接这一挑战。”他说道。

以下为发言实录(经本人审核修改)。

其实,现代公钥密码不仅仅用于美国或其他国家的政府部门。在人们日常生活或工作当中,在当今互联网的正常运行与维护当中,均离不开现代公钥密码。例如,各种软件版本的自动更新,各种网络设备补丁的下载与升级,政府部门的电子政务,企业的电子商务,个人的网上消费…均依靠现代公钥密码体制来提供虚拟社会各成员之间的相互认证,只不过这些认证工作都是在后台默默的完成,无须人们动手。因此,现代公钥密码构成了网络空间的信任链之锚。可以毫不夸张的讲,人类社会从来没有像今天这样,将如此巨大的资产托付于现代公钥密码体制。所以,一旦网络空间的这个信任锚“基础不牢”,必将“地动山摇”。

日前,计算机安全专家在德国举行会议,探讨替代目前加密系统的抗量子计算替代品。该协议能在用户浏览网页和其他数字网络时保护私人信息。当前的黑客能通过在计算机网络中推测密码、假扮授权用户或植入恶意软件等形式盗取私人信息,而现有计算机无法打破在线发送敏感信息时使用的标准加密技术格式。

第二次量子革命也一触即发,Sharma指出,1947年发明出了晶体管,在20世纪50年代早期,出现了很多使用晶体管的器械、设备和仪器。

《区块链技术体系中的加密技术 – 量子密码和后量子密码》

非常感谢CFT50论坛提供一个区块链技术交流的平台,白老师(白硕)、王老师(王励成)的演讲都非常精彩,我在这里跟大家简单分享一下我们近期的在区块链技术的研究方向。

我们在实际应用当中,碰到了很多像白老师前面讲解内容一样的需求,特别突出是在数据安全防护、身份和交易数据的隐私保护方面。在某些应用案例中,银行方面提出

“区块链中的数据是通过现有的加密算法是保证安全,目前是安全的,但不代表一直是安全的;数据多方存储(分布式存储),存在潜在的安全风险”。

在交流的过程中,他们提出了量子计算攻击和后量子密码算法方面的意见和看法,我们就和上海交大-密码与计算机安全实验谷老师的团队,针对于这方面去做了一些深入的交流和研究,今天将我们学习研究的内容跟大家简单分享一下。

首先和大家介绍一下分享的议程,

  • 第一阶段,背景知识(量子力学、量子通信、量子计算与量子计算机);
  • 第二阶段,量子密码与后量子密码(量子密码体系、量子攻击方法、后量子密码标准化、主流的后量子密码);
  • 第三阶段,区块链世界里的攻击与密码破译的量子算法(针对区块链基础设施、智能合约以及冷热钱包的攻击、密码破译的Grover算法、Shor算法)。

那么人类对现代公钥密码的安全性如此信任,原因何在呢?

但当首台大型量子计算机开始联机使用后,一些广泛使用且重要的加密技术将被淘汰。量子计算机组件由单个原子和亚原子粒子制成。根据量子理论,信息处理将通过粒子之间的相互作用完成。传统的计算机采用“0”或“1”二进制数据,而量子计算机采用的则是量子比特,它可以同时代表“0”和“1”。目前的普通计算机只能逐条计算,而量子计算机可以同时进行上百万次的运算,运算速度快10万亿倍。因此,它们能轻松战胜现有加密技术。

和第二次革命不同的是,第一次革命看到了自然界中发生的量子效应的被动杠杆化;第二次革命的特点是可以积极地设计自然界中不存在的量子态。

一、背景知识

图片 3

在分享量子密码与后量子密码之前,了解一下量子相关的背景知识。先从量子力学说起吧,量子力学里面描述微观物质理论,与相对论一起被认为是现代物理学的两大基础支柱。

微观世界里,粒子嗡嗡跳跃的概率云,它们不只存在一个位置,也不会从一个A点通过一条单一路径到达B点;此外,微观粒子具有波粒二象性。微观体系里的状态的有两种变化,

  • 一种是按运动方程式演进,这种是可逆的变化;
  • 另一种是测量改变体系状态不可逆的变化。

量子就是量子世界中物质客体的总称,他既可以是光子、电子、原子、原子核、基本粒子等微观粒子,也可以是波色-爱因斯坦凝聚、超导体、“薛定谔猫”等宏观尺度下的量子系统,他们的共同特征就是必须遵从量子力学的规律。

后面我们看一下从量子力学里几个重要理论。

  • 第一个理论:量子态叠加原理,量子态是量子力学里边来描述量子系统的状态,其运动规律遵循薛定鳄的方程;量子态也被称为波函数或几率幅,记为|ψ⟩,假定量子客体有两个确定的可能状态0或者1,通常写成|0⟩、|1⟩,由于量子状态是不确定的,它一般不会处于|0⟩或|1⟩的确定态上,只能处于这两种确定态按某种权重叠加起来的状态上,这就是量子世界独有的量子态叠加原理,用数学表示即为:|ψ⟩=|0⟩+|1⟩,其中,为复数,且满足+=1。
  • 第二个理论:海森堡测不准原理,在经典力学中,测量对物理系统本身没有任何影响,可以无限精确地进行;在量子力学中,测量过程本身对系统造成影响;对于两个不同的物理量A和B(如坐标和动量,时间和能量等),不可能同时具有确定的测量值,这是由于测量过程对微观粒子行为的“干扰”,致使测量顺序具有不可交换性。
  • 第三个理论:量子纠缠,对于由多个粒子组成的系统,其每个粒子的状态往往无法被分离出来,因此,单个粒子的状态被称为是纠缠的;纠缠的粒子有惊人的特性,例如:对一个粒子的测量,可以导致整个系统的波包立刻塌缩,因此也影响到另一个、遥远的、与被测量的粒子纠缠的粒子。
  • 第四个理论:量子退相干,当两个粒子互相纠缠时,即使距离遥远,一个粒子的状态变化将会影响另一个粒子的状态变化;量子纠缠是量子技术的重要资源,是量子计算机、量子模拟等重大应用的物理基础;量子纠缠尽管奇妙无比,用途广泛,但它却有天然的致命伤——量子纠缠十分脆弱,环境会破坏其量子特性而使“纠缠”消失掉,即两个纠缠的量子客体最终会演化为不纠缠的状态,非局域关联或完全断开;环境不仅包括经典噪声,诸如热运动、吸收、散射等,还包括量子噪声,即真空起伏。这种环境引起的量子性消失,被称为量子退相干。

基于量子力学的理论基础,后面介绍一下量子通讯、量子计算与量子计算机。

  • 量子通信是指利用量子纠缠效应或海森堡测不准原理进行信息传递的一种通讯方式。
  • 量子计算是一种遵循量子力学规律调控量子信息单元进行计算的新型计算模式。

量子计算机是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置,该装置处理和计算的是量子信息、运行的是量子算法。

量子计算机使用的是量子比特,量子计算机能秒杀传统计算机得益于两个独特的量子效应:量子叠加和量子纠缠

  • 量子叠加能够让一个量子比特同时具备0和1的两种状态,
  • 量子纠缠能让一个量子比特与空间上独立的其他量子比特共享自身状态,创造出一种超级叠加,实现量子并行计算,其计算能力可随着量子比特位数的增加呈指数增长。

四十年前诞生的现代公钥密码体制,无论是RSA算法,ECC椭圆曲线算法,还是DH密钥协商算法,它们的安全根基都系在“一根绳上”—数论中的“大数素因子分解/离散对数”困难问题之上。由于人们相信仅凭现在的计算机(即使是比现有最强大的超级计算机还快千百万倍)都难以在数十年甚至上百年之内破译这些公钥密码算法,因此世人一直高枕无忧。

“我非常担心人们还没有准备好。”加拿大滑铁卢大学量子计算研究所联合创始人、网络安全咨询公司evolutionQ
首席执行官Michele Mosca说。

“通过设计新的量子态或者效应,已经展现出了很多的量子所具备的能力,并且在未来的几十年内,使我们生活的很多方面都发生阶跃变化。”Sharma解释道。

二、量子密码与后量子密码

图片 4

第二阶段,大家简单分享一下量子密码和后量子密码知识。

Shannon证明,若密钥为长度不小于待加密的明文长度的随机序列,且任何一密钥仅使用一次,该加密体制(C=PK)是无条件安全的(Perfect
Secrecy)。

为何“一次一密”密码迄今未被广泛使用呢?主要原因是,“一次一密”要大量消耗“密钥”,需要通信双方不断地更新密码本,而“密码本”的传送(称为“密钥分配”)是关键问题所在。

  • 量子密码体系采用量子态作为信息载体,经由量子通道在合法的用户之间传送密钥;
  • 量子密码的本质是用于解决密钥分配问题
    ,从该意义上说,量子密码即为量子密钥分配,为“一次一密”加密体制在公开信道进行安全、高效的密钥分配提供很好的解决方案。

量子密码的安全性由量子力学原理所保证,具体来说,其安全性依赖于:

  • 1)量子不可克隆性:窃听者无法克隆出正确的量子比特序列;
  • 2)海森堡测不准原理:基于单光子量子信道的量子密码
  • 3)量子纠缠:基于量子相关信道的量子密码。

量子密码在理想状态下可以确保密钥的安全性,但实际上量子密码系统绝对达不到理想状态,例如单粒子探测效率不是百分百的,它会产生传输损耗,各种器件不完善等等问题,这些非理想漏洞就可能被窃听者用来窃取密钥,但却不会被合法用户发现。同时,量子密码体系必须确保安全密钥的生成率足够高,以达到信息“一次一密”加密的需求。

目前,在百公里范围的城域网,量子密码体系可以做到密钥分配在现有的各种攻击下是安全的,安全密钥生成率在25公里内可确保高清视频“一次一密”。

量子攻击方法可分为非相干攻击和相干攻击。

  • 非相干攻击:攻击者独立地给每一个截获到的量子态设置一个探测器,然后测量探测器中的粒子,从而获取信息;
  • 相干攻击:攻击者通过某种方法使多个粒子比特关联,从而可相干地测量或处理这些粒子比特,进而获取信息。

由于量子信息的奇妙特性,使得量子计算具有天然的并行性,且其计算能力可随着量子比特位数的增加呈指数增长;量子计算机的这种超强计算能力,使得基于某些数学难题的传统公钥密码的安全受到挑战;然而,量子计算机并不能解决电子计算机难于求解的所有数学问题。基于量子计算机不擅长计算的那些数学问题构造密码,就可以抵抗量子计算的攻击,我们称能够抵抗量子计算机攻击的密码为抗量子计算密码,或后量子密码

出于对抗量子计算密码需求的紧迫性,国际上从2006年开始举办”抗量子计算密码学术会议(Post-QuantumCryptography)“,每两年举行一次,至今已举办了4届,已经产生了一批重要的研究成果,让人们看到了抗量子计算密码的新曙光。

  • 2015 年 8
    月,美国国家安全局公开宣布由于面临量子计算的威胁,其计划将联邦政府各部门目前使用的ECC/RSA
    算法体系向后量子算法进行迁移。
  • 而负责标准制定的美国国家标准与技术局也在2016 年 2
    月正式面向全球公开了后量子密码标准化的路线图,并在同年秋正式公布征集密码系统建议的计划,其中包括公钥密码、数字签名以及密钥交换算法,建议征集的截止日期定于2017年12月;此后,国家标准与技术局会利用3-5年时间分析这些建议并发布相关分析报告,最终的标准拟制工作也将耗时1-2年。
  • 换言之,国家标准与技术局后量子密码算法标准最终将在2021-2023年出台;而考虑到其具备较好的安全性能以及国际互联网工程任务组已经着手展开了标准化工作,基于哈希算法的签名标准可能会更快地推出。
  • 除此之外,欧洲量子密码学术和工业界研究者联合组织“后量子密码”项目(PQCrypto)也在2015年发布了一份初始报告,在对称加密、对称授权、公钥加密以及公钥签名系统领域都提出了相关标准化建议。
  • 针对受到量子计算技术严重威胁的RSA/ECC密码系统,该报告认为麦克利斯密码系统具有发展成为新的公钥加密标准的潜力。

图片 5

在后面和大家分享一下四种主流的后量子密码算法及其优缺点。

第一种是基于哈希算法签名(Hash-based
signatures)
,安全依赖于底层的哈希函数的抗碰撞性;
优点:安全要求是最小的;
缺点:只能用于量子签名方案(签名/验签)。

第二种是基于多元二次方程式密码(Multivariate-quadratic-equations-cryptography),多变量密码体制(MPKC)被认为是能够抵御基于量子计算机攻击的新型公钥密码体制之一,利用减扰动方法构造出了一种基于MPKC的新型签名方案,其计算效率,主要指中心映射求逆的效率高于两个著名的多变量签名体制Sflash和Quartz;
优点:与基于hash的签名方案相比,签名较短;
缺点:与传统的RSA、ECC等系统相比,密钥非常大;还有在MPKCs的可证明安全性没有实质性的结果。

第三种是基于编码密码(Code-basedcryptography),算法原语(底层单向函数)使用纠错码,第一个基于编码密码(公钥加密方案)是由Robert
J. McEliece在1978年提出的;
优点:加解密速度快;
缺点:大型公钥大小(100KBS-几MBS),签名/验签成本大,

“基于编码密码体系没有实际应用是知道”;二元Goppa码是安全的(似乎是),而其他基于编码密码体系适用应仔细考虑,有些方案看上去并不是很牢靠的。

第四种是基于格密码(Lattice-basedcryptography),安全性是基于最坏情况下格问题的困难,Ajtai在1996年提出“Collision-ResistantHash
Function”,Goldreichet al.在1997年提出“PKE and signature
schemes”,Ajtai和Dwork在1997年提出“PKE scheme”;
优点:可证明安全:基于最坏情况硬度的强安全性证明;相对高效的实现;非常简单;多用途,许多先进的密码体制的提出,例如:IBE、ABE、FHE;
缺点:暂无。

现在密码学术界,对于后量子密码的方案基本上是基于哈希函数签名基于格密码两者结合的,基于哈希函数签名用于抗量子密码体系的签名/验签,基于格密码用于抗量子密码体系的加密/解密。

然而,1994年,美国贝尔实验室的数学家Peter
Shor发明了一种破解算法,从理论上证明了这种算法能够在很短的时间内完成对上面的数学困难问题的求解,从而宣布了现代公钥密码已经不再安全。只不过他的这个破解算法有一个前提,那就是必须使用“大规模的量子计算机”,而这在当时纯属天方夜谭。因为在二十多年前,造出一台能够达到破解现代公钥密码水平的量子计算机所面临的困难就如同让一名幼儿园小朋友马上完成博士论文一样不可思议。

但是,政府和产业界可能需要数年时间设置针对目前加密技术的量子安全替代品。许多被提议的替代者,即使一开始看上去固若金汤,但在它能被认为足以保护知识财富、金融数据和国家机密的在线传输安全之前,必须能抵御众多实际或理论挑战。

QLabs于2008年成立,是堪培拉澳大利亚国立大学物理学院的剥离部门,QLabs的产品组合都是独立于澳大利亚国立大学而开发出来的。

三、区块链世界里的密码攻击以及量子密码破译算法

第三阶段,和大家分享一下在区块链世界里的密码攻击以及量子密码破译算法。针对现有区块链技术,攻击主要集中在四个方面:

  • 第一,针对区块链基础设施的攻击
  • 第二,针对智能合约的攻击
  • 第三,针对热钱包的攻击
  • 第四,针对冷钱包的攻击,代表性的攻击事件如图所示。

图片 6

目前,可用于密码破译的量子计算算法主要有Grover算法Shor算法

对于密码破译来说,

  • Grover算法的作用相当于把密码的****密钥长度减少一半
  • Shor算法适用于解决大整数分解、离散对数求逆等困难数学问题,对目前广泛使用的RSA、EIGamal、ECC公钥密码和DH密钥协商协议可以进行有效攻击。

因此,在量子计算环境下,RSA、EIGamal、ECC公钥密码和DH密钥协商协议将不再安全

我们设计新区块链底层的时候,着重考虑数据隔离、数据安全防护以及隐私保护方面。今天准备并不是非常充分,简单大家分享到此,非常感谢!

但是人类追求技术进步的步伐有时候也超出了自身的预料。进入本世纪之后,特别是2012年之后,设计制造量子计算机的关键技术接二连三取得突破。尽管现在人们研发量子计算机的原动力已经远远超越了破解公钥密码算法,而是更加急迫的希望能够把它用于先进材料、新药设计、基因工程等领域来提升人类社会的生活品质,甚至探索宇宙的终极秘密,如量子场论等。然而,量子计算机一旦真的制造出来,毫无疑问将对现有公钥密码体制带来毁灭性的打击,如果人们不能尽快找到替代方案,那么当今的网络空间也必将荡然无存。一句话,设计“新型抗量子公钥密码”的队伍现在必须和那些研发量子计算机的队伍赛跑。

“要确信一个密码系统真实可靠,你需要许多人仔细检查,并试着设计攻击方法,以判断其是否存在缺陷。”美国国家标准和技术协会物理学家Stephen
Jordan说,“这需要很长时间。”