信息被转换和处理成便于传输的电信号,光纤通信技术完全可以成为信息技术里的中流砥柱

图片 6

光纤即为光导纤维的简称。光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。

问:光纤的概念是怎样的呢?

光纤通信具有一系列优异的特性,因此,光纤通信技术在80年代初投入商用以来发展速度之快,应用面之广是通信史上罕见的。可以说这种新兴技术,是世界新技术革命的重要标志,又是未来信息社会中各种信息网的主要传输工具。

光纤通信是利用光波作为载波,以光纤作为传输媒质,将信息从一处传至另一处的通信方式,简称为光通信。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。就光纤通信技术本身来说,应该包括以下几个主要部分:光纤光缆技术、传输技术、光有源器件、光无源器件以及光网络技术等。

华为、中兴海外遭难 都因我国这个器件存“短板”?

光纤通信是利用光波作载波,以光纤作为传输媒质将信息从一处传至另一处的通信方式,被称之为“有线”光通信。当今,光纤以其传输频带宽、抗干扰性高和信号衰减小,而远优于电缆、微波通信的传输,已成为世界通信中主要传输方式。

图片 1

随着不断发展的信息技术,光纤通信技术完全可以成为信息技术里的中流砥柱,在信息社会中发挥不可代替的作用,其发展潜力不言而喻,将成为未来世界通信领域发展中的主流。接下来小编为大家介绍什么是光纤通信及光纤通信的优缺点。

图片 2

2017年8月8日

1966年英籍华人高锟(Charles
Kao)发表论文提出用石英制作玻璃丝,其损耗可达20dB/km,可实现大容量的光纤通信。当时,世界上只有少数人相信,如英国的标准电信实验室、美国的Corning玻璃公司,Bell实验室等领导。2010年高锟因发明光纤获得诺贝尔奖。1970年,Corning公司研制出损失低达20dB/km,长约30
m的石英光纤,据说花费了3000千万美元。1976年Bell实验室在华盛顿亚特兰大建立了一条实验线路,传输速率仅45Mb/s,只能传输数百路电话,而用中同轴电缆可传输1800路电话。因为当时尚无通信用的激光器,而是用发光二极管做光纤通信的光源,所以速率很低。1984年左右,通信用的半导体激光器研制成功,光纤通信的速率达到144Mb/s,可传输1920路电话。1992年一根光纤传输速率达到2.5Gb/s,相当3万余路电话。1996年,各种波长的激光器研制成功,可实现多波长多通道的光纤通信,即所谓“波分复用”技术,也就是在1根光纤内,传输多个不同波长的光信号。于是光纤通信的传输容量倍增。在2000年,利用WDM技术,一根光纤光纤传输速率达到640Gb/s。有人对高锟1976年发明了光纤,而2010年才获得诺贝尔奖有很大的疑问。事实上,从以上光纤发展史可以看出,尽管光纤的容量很大,没有高速度的激光器和微电子仍不能发挥光纤超大容量的作用。电子器件的速率才达到吉比特/秒量级,各种波长的高速激光器的出现使光纤传输达到太比特/秒量级(1Tb/s=1000
Gb/s),人们才认识到“光纤的发明引发了通信技术的一场革命!”

在这秋高气爽的天气,很高兴给大家分享我对这个问题看法,在这里让我们一起走进这个问题,那现在让我们一起探讨一下关于这个问题。

图片 3

那么光通信技术又是怎么传输信号的呢?首先,在发信端,信息被转换和处理成便于传输的电信号,电信号控制光源,使发出的光信号具有所要传输的信号的特点,从而实现信号的电—光转换。其次,发信端发出的光信号通过光纤传输到远方的收信端,经光电二极管等转换成电信号,从而实现信号的光—电转换。最后,电信号再经过处理和转换而恢复为与原发信端相同的信息。

在云计算、物联网、移动互联网的推动下,光通信市场开始进入到高速成长期,细数光通信的发展已有数十年之久,产业链布局已比较完善,产业规模和产品种类呈现不断扩大的趋势。
光通信行业按传输介质的不同,可分为大气激光通信和光纤通信,由光器件、光通信设备和光纤光缆构成。
光器件:为光通信上游,是光设备的核心器件,实现光信号的产生、调制、探测、连接、波长复用和解复用、光路转换、信号放大、光电转换等功能,是光通信发展的重要根基。
光通信设备:由各种光器件构成,包括完成光电信号转换、传输和收发的设备以及配线连接、分配设备等,常用的光通信设备有光终端收发机、光路由、交换机、光纤配线产品、光缆终端盒等。
我们不防先来说说光通信的核“芯”。光通信历史,1970年开始新里程
那么,我们一同来看看光通信的发展,这样对光器件的榜单情况能有更好的理解。
1880年,亚历山大˙格拉汉姆˙贝尔发明利用光波为载体传输语音信息的“光电话”,由此证明光波作为载体可进行信息的传递,现代光通信都源于这个雏型。但受没有可靠的高强度光源、没有稳定的低损耗传输介质的限制,光通信一直被“搁浅”在实验室,与实用阶段隔着一道屏障。
而这一“搁浅”就是80年,直到1960年7月,美国科学家希奥多˙哈罗德˙梅曼发明了第一个红宝石激光器,光通信才真正从理论的层面转向实质性阶段。当然,这也引发全球激光通信研究热。
随着研发的进展,传输距离更长、抗干扰能力更强、通信容量更大的传输介质成为光通信迅速落地的关键,于是空心光波导管、透镜阵列等均被尝试。在陷入一片绝望之时,1966年英国标准电信研究所的华裔科学家高锟博士发表了一篇奠定光纤通信基础的重要论文,指出:光导纤维的高损耗不是其本身固有的,而是由材料中所含杂质引起的,如果降低材料中的杂质含量,便可极大地降低光纤损耗。他预言,通过降低材料杂质含量和改造工艺,可使光纤损耗下降到20
dB/km;通过原材料的提纯能制造出适于长距离通信使用的低损耗光纤。在此理论的指导下,美国康宁于1970年制成了衰减为20
dB/km低损耗石英光纤。
1970也是光器件的新里程,美国贝尔实验室、日本电气NEC和苏联先后研制成功室温下连续工作的双异质结半导体激光器,从光通信从实验室研究真正走了出来。
1970 年被称为光通信的“元年”。光器件,中国竟在有源上跟丢了
相对于传输介质,光器件的发展却似乎没有这么坎坷。
发达国家在1975年后逐步形成光器件产业,中国光器件产业仅仅是晚了5年,无论是有源器件,还是无源器件,都足以满足国家光纤通信发展初期科研和工程需要。然而,随着时间的推移,由于科研投入不够、工业制造薄弱等原因,我们就被狠狠甩在后面,在高端产品与核心技术方面尤为薄弱。
光器件分为有源器件与无源器件两类。
从产业链角度来看,光器件又分为光芯片、光组件、光器件和光模块。光模块是广义的光有源器件,由光器件、功能电路和光接口组件等组成,其中的光器件包括TOSA和ROSA两部分。光模块的功能就是光电转换,发送端把电信号转换成光信号,通过光纤传送后,接收端再把光信号转换成电信号。光有源器件
光有源器件是光电信号转换的器件,相当于光传输系统的心脏,包括光源/激光器、光检测器、光放大器及光调制器。
光源/激光器是电信号转光信号的核心器件,主流激光器有VCSEL(垂直腔面发射激光器)、DFB和EML。
我国光有源器件的研发始于20世纪70
年代,恰是高新技术对中国封锁与禁运的“巴统”时期。中科院半导体研究所、武汉邮电科学研究院等研制出波长为850
nm的短波长激光器,随后1310和1550 nm的长波长激光器问世。 1993
年后,“巴统”时期结束,国外的光有源器件开始大量涌入中国市场。
目前,我国只有寥寥几家能自主生产激光器和探测器管芯,而且仅限于10
Gbit/s以下速率。通信设备及系统所需的高速率管芯、单元器件及掺铒光纤均需要进口。光无源器件
光无源器件用以实现光信号的连接、耦合、分路、波长复用等功能,但无需进行光电信号转换的光器件,包括用量非常大但技术门槛较低的光纤连接器、光分路器,也包括门槛相对较高的光开关、波分复用解复用器、光衰减器,光无源器件种类繁多。
光衰减器可分为固定光衰减器和可变光衰减器两大类,FOA只能对光功率进行预定量的衰减,而VOA既能对光功率进行预定量的衰减,也能对光功率进行实时控制,因此VOA已日渐成为主流。
随着1970年后光纤技术的出现,我国无源光器件的研发也启程。通过中国电子科技集团第23研究所、武汉邮电科学研究院固体器件研究所等组织机构的努力,我国光通信系统中所用的光连接器和光耦合器绝大部分都是国产的。
尽管光无源器件的产业发展似乎比光有源器件要迅猛,但问题也是很多,比如光纤连接器用陶瓷套管的毛坯需要进口、光纤连接器技术自主知识产权几乎为零。随着不断努力,如今中国无源器件的水平与国外的差距不大,甚至达到国际领先水平,比如陶瓷套管/插芯、光收发接口等组件,我国是全球最大的生产产地。全球格局及未来趋势
美日是光器件主要研发地,掌握产业最前端技术,相关厂商数量相对较多。目前,全球有200多家光器件厂商,这是一个竞争相当激烈的市场。随着兼容并购,市场集中度也将提高。
近年来,华为、中兴屡遭受美国商务部调查,其背后与我国核心元器件缺失有着直接关系,我国光器件产业亟待升级。
目前,在国内以华为、中兴和烽火通信为代表的企业已开始实行“一体化”战略,积极向芯片领域布局,提升一体化能力,这必将提高公司的竞争力,降低成本,保障货源,进一步提升企业的盈利能力。
不难预料,光通信产业也将会由低门槛、低利润率的光纤光缆向高门槛、高利润率的核心器件和一体化延伸。光器件集成化与智能化是未来的主方向,光系统设备总成本中,光器件占比不断上升,达到30%指日可待。根据LightCounting预测数据中心用光模块的市场增速未来保持30%至50%增长,到2021年整个市场预计会由2014年的16亿美元增长至49亿美元。来源:与非网

技术领域

光纤是光导纤维的简写,是一种由玻璃或塑料制成的纤维,可作为光传导工具,多根光纤在一起就叫光缆。传输原理是“光的全反射”。前香港中文大学校长高锟和George
A.
Hockham首先提出光纤可以用于通讯传输的设想,高锟因此获得2009年诺贝尔物理学奖。

什么是光纤通信

图片 4

通信容量大、传输距离远;一根光纤的潜在带宽可达20THz。采用这样的带宽,只需一秒钟左右,即可将人类古今中外全部文字资料传送完毕。400Gbit/s系统已经投入商业使用。光纤的损耗极低,在光波长为1.55μm附近,石英光纤损耗可低于0.2dB/km,这比任何传输媒质的损耗都低。因此,无中继传输距离可达几十、甚至上百公里。

在下面优质内容我为大家分享,首先我分享下我个人对这个问题的看法与想法,也希望我的分享能给大家带来帮助和快乐,同时也希望大家能够喜欢我的分享。

所谓光纤通信,就是利用光纤来传输携带信息的光波以达到通信之目的。要使光波成为携带信息的载体,必须对之进行调制,在接收端再把信息从光波中检测出来。然而,由于目前技术水平所限,对光波进行频率调制与相位调制等仍局限在实验室内,尚未达到实用化水平,因此目前大都采用强度调制与直接检波方式。又因为目前的光源器件与光接收器件的非线性比较严重,所以对光器件的线性度要求比较低的数字光纤通信在光纤通信中占据主要位置。

相比之下,光通信技术的传输速度和各种性能明显优于电通信技术。光波也是电磁波,但它的频率比电信中利用的电磁波高出几个数量级,有极大的通信容量。所用光纤和由多根光纤组成的光缆体积小,重量轻,易于运输和施工。光纤的衰耗很低,故无中断,通信距离很长。

信号干扰小、保密性能好;

光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而
达成的光传导工具。光纤实际是指由透明材料做成的纤芯和在它周围采用比纤芯的折射率稍低的材料做成的包层,并将射入纤芯的光信号,经包层界面反射,使光信号在纤芯中传播前进的媒体。

光纤通信的优点

图片 5

抗电磁干扰、传输质量佳,电通信不能解决各种电磁干扰问题,唯有光纤通信不受各种电磁干扰。

一般是由纤芯、包层和涂敷层构成的多层介质结构的对称圆柱体。光纤有两项主要特性:即损耗和色散。光纤每单位长度的损耗或者衰减(dB/km),关系到光纤通信系统传输距离的长短和中继站间隔的距离的选择。

1、频带极宽,通信容量大

此外,光纤是绝缘体,不会受高压线和雷电的电磁感应,抗核辐射的能力也强,因而在某些特殊场合,电通信受干扰不能工作而光纤通信却能照常工作。光纤几乎可做得不漏光,因此保密性好,光缆中的光纤也互不干扰。当通信容量较大、距离较远时,光纤通信系统的每话路千米的造价较电缆通信为低。光纤通信因有这些优点而得到迅速发展。

光纤尺寸小、重量轻,便于铺设和运输;

在以上我的精彩的分享是关于这个问题的解答,都是我的真实想法与观点,同时我希望我分享的这个问题的解答于分享能够帮助到大家。

光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps。

图片 6

材料来源丰富,环境保护好,有利于节约有色金属铜。

我也希望大家能够喜欢我的解答,大家如果有更好的关于这个问题的解答与看法,望分享评论出来,共同走进这话题。

2、损耗低,中继距离长